Etanol.nu

Forum för föreningen etanol.nu
Aktuellt datum och tid: tor 24-03-28 10:06

Alla tidsangivelser är UTC + 1 timme




Ny tråd Svara på tråd  [ 102 inlägg ]  Gå till sida 1, 2, 3, 4, 5 ... 7  Nästa
Författare Meddelande
InläggPostat: lör 07-04-21 16:44 
Offline
Användarvisningsbild

Blev medlem: tis 06-12-19 18:12
Inlägg: 109
Ort: Färingtofta, Skåne
Efter förfrågan på Nordic Audi tänkte jag skriva ihop en så gott som steg för steg-instruktion hur det går till. EHA står för övrigt för Electro Hydraulic Actuator, eller elektrohydrauliskt ställdon på svenska.
Det här gäller för KE-Jetronic med lambdasond. Snillet här på forumet var pionjären i detta.

Vad man gör är att flytta arbetsområdet för EHA, som normalt ska kunna justera runt Lambda 1 för bensin, men nu vill vi ju ha samma effekt för etanol. Det här som sitter fram på bränslefördelaren är EHA. Som ni ser har jag kapat ena kabeln och satt en delbar kabelsko där, för att enkelt kunna koppla in amperemeter i serie med EHA. Skruvar man bort EHA (pass på, det sprutar en del bränsle) så hittar man en spårskruv på baksidan. Detta är ett täcklock som själva justerskruven i insexutförande sitter under.

Så, börja med att med bensin i tanken mäta upp strömmen genom EHA under drift. Jag föreslår att kablarna från delningspunkten förlängs in i kupén så att du kan ha din favoritmultimeter liggande på lämpligt ställe under färd. Notera att för KE-Jetronic ska den ligga och pendla runt 10mA, undantaget kallstart och motorbroms. På KE3-Jetronic ska den enligt uppgift från Snillet ligga runt 0mA, dvs reglera med både positiv och negativ ström. Märk väl att strömmens arbetsområde ligger på 0-20mA respektive -10-10mA. Skulle du utan att justera EHA tanka etanol hamnar strömmen på 20mA vilket betyder att EHA inte kan kompensera mer.

Justerskruven fungerar så, att medsols justering ökar andelen bränsle i blandningen. Det är det vi vill. Med etanol i tanken, börja med ett halvt varv, och jobba uppåt däriftån. Jag tror att jag själv slutade på 1,5 varv, men det är mindre viktigt. Notera även att om motorn drar tjuvluft någonstans, så kommer den att gå oskäligt magert och du behöver justera mer än du ska. Försäkra dig alltså före om att någon sådan läcka inte existerar. Justera medsols, provkör med inkopplad multimeter tills du har endast E85 i tanken och strömmen ligger runt 10mA eller 0 för KE3.

Detta bygger på att din bil är utrustad med lambdasond. ECU ändrar nämligen strömmen genom EHA efter vad lambdasonden indikerar. Vid felaktig lambdasond eller total avsaknad av den ligger strömmen på 10mA oavsett om motorn går magert eller fett.


Så till kallstarterna. Detta är kallstartsventilen. Jag har löst det som så att jag med en knapp på instrumentpanelen öppnar den manuellt. Du behöver ett tvåpoligt växlande relä, en från(till)-tryckknapp (momentan) samt lite kabel.
Koppla enligt:
Bild
De två återstående trådarna ska kopplas till de ordinarie som går till kallstartsventilen. På så sätt förbikopplas inte ECUs funktion så länge knappen inte är intryckt.

Med detta gjort torde både drift och kallstarter fungera utomordentligt. Eventuellt kan ett steg varmare tändstift behövas. Det är mycket individuellt från motor till motor. Det brukar annars märkas vid kraftig acceleration på höga varv i form av misständningar. Tillse att tändningen står rätt, och var glad över att köra miljövänligt.

_________________
Audi A6 2,4 quattro -02, nu på 100% E85
Der Spiritus. Das Fahren.


Dela på FacebookDela på TwitterDela på TuentiDela på SonicoDela på FriendFeedDela på OrkutDela på DiggDela på MySpaceDela på DeliciousDela på TechnoratiDela på TumblrDela på Google+
Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: mån 07-04-23 09:14 
Offline
Forummoderator

Blev medlem: mån 07-01-01 20:57
Inlägg: 6015
Ort: Hindås
Mkt bra instruktion!
Min enda kommentar är att man bör ta reda på vilka strömmar som det skall vara till EHA vid normal lambdareglering för varje bil, det skiljer en del, iaf mellan olika bilmärken.
Samt att om man har en bil utan EHA behöver man alltså inte mäta strömmen eftersom den int är beroende av hur magert eller fett motorn går.
På en sådan bil är det bara att skruva upp (ca 1 varv) medurs och kontrollera med CO-mätare eller motoröra.
En utveckling av kallstartslösning vore egentligen också att via ett växlande relä ge större ström till EHA i startögonblicket.
På det sättet borde man kunna få större kallstartmängd än vad man får via den enda kallstartventilen.
Mina egna prov i kyla (-25) har visat att det är nödvändigt för att kunna starta direkt.
Dessutom är det fördeaktigt att värma upp bränslet, problemet är bara att det ju med en K(E)(3)-jet är en hel del delar som måste värmas upp via cirkulation av kallt bränsle tillbaka till tanken.
Mer om detta kan man läsa om här:
http://www.etanol.nu/forumrecover/viewtopic.php?t=238
http://www.etanol.nu/forumrecover/viewt ... highlight=

_________________
http://direktdemokraterna.se
Myndigförklara dig själv.


Upp
 Profil  
 
 Inläggsrubrik: EHA-adaptering-justering
InläggPostat: tis 07-05-29 10:01 
Offline
Forummoderator

Blev medlem: mån 07-01-01 20:57
Inlägg: 6015
Ort: Hindås
Det finns de som jobbar med detta!:
Mercedes-specifika, men ändå nyttiga informationer:
http://www.continentalimports.com/ser_ic20134.html

För säkerhets skull kopierar jag in texten här med fetmarkering på de viktigaste EHA-delarna:

Mercedes-Benz Driveability:
Evaluating Electronic Engine Controls
Steve Brotherton

February 2001

When my wife’s new ML320 had its "check engine" light come on with less than 15K on the speedometer, it was quite a job convincing her that she could drive the car until the dealer could fit her in 10 days later. I, of course, verified that the fault code indicated an O2 sensor problem and the risk was minimal to drive it around town another 10 days. I also evaluated the data stream to verify that the O2 sensor was functioning well enough so that the catalyst wouldn’t melt down in the meantime.

I have been working on cars for 30 years and now, more than ever, I see customers get in a panic over a small yellow light. These are the same people who often wouldn’t bring in their car when it was afflicted with other symptoms until it needed to be towed. This challenges technicians with the evaluation of a technical difficulty, with no external symptoms other than a small yellow light on the dash and whatever electronic self-diagnostics are available.

In preparing to write this article, I talked to a number of technicians who answer Mercedes-Benz questions on the international Automotive Technicians’ Network (iATN). They all said that the greatest number of questions being asked were still about CIS model cars. Most of these problems do have symptoms that are identifiable in the vehicle’s performance. While I use tools either listed as factory or cloned from such, I will demonstrate the simple ways to evaluate the electronic engine controls and make basic adjustments with common shop tools.

Electronically, there are four windows to the KE-Jetronic System. Two of these windows involve self-diagnostic testing and fault codes. The other two involve dynamic monitoring of the two basic electronic servos. These are the electro-hydraulic actuator (EHA) and the idle control valve.


Fig. 1 ECT Sensor disconnected


Fig. 2 O2 Sensor cold or disconnected


Fig. 3 Active, changing reading that, in this case, is slightly rich


The first self-diagnostics were "real-time" only through fixed integrator duty cycles given on pin #3 of the diagnostic connector X11 (on the left fender). This value, that is normally read with Bosch’s Lambda closed-loop tester, KDJE-P600 (see Figure 5), can also be read with a good multimeter or scope on the duty-cycle setting. Patterns 1 and 2 (see Figures 1 & 2) indicate fixed whole number duty cycles, indicating a fault. Pattern 3 (see Figure 3) shows a closed-loop active reading that changes continuously and indicates the basic mixture. As the mixture is changed by the 3mm air flow plate trim screw, the amount of correction to achieve lambda is indicated by the integrator value. The value of 38% indicates a rich reading. The total range of feedback control is from 0% to 100%. A properly adjusted engine will be in closed loop and have a integrator duty-cycle ranging plus or minus around 50%. This window gives real-time faults, average mixture settings, and a basic feel for the speed of lambda correction and O2 sensor speed.

The second and probably the best overall view of this system is seen through the monitoring of the EHA current. The EHA is the final servo device for applying the corrections intended by the control system. All forms of enrichment are accomplished by increasing the differential pressure within the fuel distributor. The EHA acts as a controlled leak depending on current. Positive current flows cause enrichened mixtures by leaking down the lower chamber pressure (higher differential pressure). Negative current flows cause lean mixtures and, on deceleration, a negative 60ma causes fuel shut-off.

A properly adjusted system will have current flows hovering at zero (for all systems but the early 190s, as they had only positive current movement and the middle was 8ma). The two readings in Figure 4 show a duty cycle reading of 35% and an EHA current of -3ma. Both of these readings indicate a slightly rich reading being corrected by the negative current on the EHA.

Both of these readings are shown with standard electrical tools (see Figure 5 for the factory tool reading). We use an inexpensive multimeter with a fixed harness that easily plugs in between the EHA and the car’s harness. The time it takes to remove the air cleaner is the greatest labor involved. The wires are long enough so that the car can be driven while being monitored.

The amount of current correction should be within 10% at various engine speeds. We usually check at idle and 2,000 rpm. Differences can indicate air leaks and, at least once, a bad EHA itself.


Fig. 4 Duty cycle reading of 35% and an EHA current of -3mA

A similar hook-up with an inexpensive ammeter can be connected to the idle control valve. The values change with this system on different vehicles, but monitoring current flow can show problems that cause the number one complaint I see — intermittent stalling. The current usually runs from 600-700ma at idle. Adding A/C usually adds 50ma control. When the idle switch opens, the valve is held open at 800-900ma to prepare for sudden throttle release. The number one intermittent problem we see is caused by the over-voltage protection (OVP) relay. Watching the idle valve current allowed me to understand how the OVP can cause stalling.

Since a disconnected idle valve limps home at a higher than normal rpm, I always found it hard to understand how removing the idle valve’s power could cause a stall. I finally saw it, though, while driving and monitoring the idle valve current. The normal current of 600-700ma dropped to 350-450ma and the idle dropped to about 450 rpm. A thump on the OVP relay caused the current, as well as the idle, to instantly jump to proper value. The current was being controlled not by the KE controller, but rather by the bad internal power feed connection of the OVP.


Fig. 5 Factory tool reading of duty cycle and EHA current

The OVP also totally fails or burns its fuse, killing all EHA current. This condition doesn’t affect a warm motor, as it should already be running closed loop at zero milliamps. But it causes most of the hard cold-starting problems. Watching the EHA current is a quick way to verify a good OVP relay. Since the ABS is also powered by the OVP relay (often by a separate circuit), a real quick diagnostic insight can be made by the combined symptoms of ABS light and hard cold starting.

As these systems progressed, they were equipped with on-board self-diagnostics with memory and check engine lights. This "fourth window" is also accessible with regular shop electrical tools. In this case, I used a scope to verify the readings that I received from my impulse counter tool (see Figure 6) that is similar to the factory tool. This process of reading codes for these early systems works up to 1994 for all systems, and later on some systems. Basically, it will work up to OBD II systems, and applies to all systems, not just engine management systems. The code retrieval method is very simple. The communications take place over a single line on the appropriate diagnostic connector. On the car I used (a 1991 300TE), the connector (X11/4) is located next to the battery, next to the right side hood hinge.


Fig. 6 Impulse tool counter

The KE controller is accessed on data terminal #3. With the key on, engine off, self-diagnostics is activated by grounding the #3 pin for two to four seconds. Once this takes place, the control unit transmits the codes by itself, grounding the #3 terminal. (Remember that all systems work the same; all you need is a directory of which pins to activate and the code table to interpret.)


Fig. 7 Code 7 reading

The impulse counter makes life easy by counting up some high numbers. In the scope pattern in Figure 7, I connected the scope negative lead on the battery positive and the positive lead in the #3 pin. I attached a jumper ground for three seconds and the control unit grounded the pin seven times, which could easily be counted. This was done again and code 13 was read, again and code 14 was read, and again and code 27 was read. If you are using the scope to read this, the time scale must be appropriate to get the whole thing, as every further activation moves on to the next code. They are listed one at a time until they are repeated. This can be done over and over. Each time the pin is grounded for two to four seconds, the next code is communicated by the control unit, grounding out the code number in "blinks." An LED can also be used to see a "blink" for counting.

Once all codes are read, they can be erased by holding the jumper to the appropriate pin for six to eight seconds. After this is done, another activation with a two- to four-second ground will read the next code, and a further six- to eight-second ground pulse will erase it. This is continued until all codes have been read and erased. This will be shown by the final code of "one blink."


Fig. 8 Carboned-up port

With the development of self-diagnostics in the late ‘80s, came the ability to receive fault codes, view actual data, activate elements and eventually change programming. The car mentioned above can be viewed and have its codes read by common shop tools. Reading actual data will require a factory scanner or a clone. Version coding and changing of adaptations has been out of reach without the factory tool HHT.

Probably the most crucial place this has affected us has been in our body shop. All the air bag modules since 1995 need to be version coded, requiring a trip to the dealer. It is claimed that one aftermarket scanner’s newest version will now do version coding, reset adaptation values and even do some data graphing. I am eager to check this out as my plans were forming to spend the big bucks on the Mercedes-Benz tool, Star Diagnosis, which is now available in some form to independents.


Fig. 10 Blockage removed from port

I recently had the pleasure to witness the testing of a 1998 GM product EVAP system with the Tech2. The presenter showed how an OBD II EVAP monitor could be initiated using a "Service Bay Test" function. The tool also could manually do testing by activating the vent valve and purge valves. The Mercedes-Benz EVAP system is similar but has no similar way of doing a service bay test using any of the aftermarket scanners. I couldn’t find anyone who knew whether or not the Star Diagnosis tool could perform such tests.

Without the ability to do those tests (especially if the manufacturer can), we need more than tools to figure them out at times. A recent case shows the latest tool: The internet. A case in point involves the iATN. A C280 came in with the "Check Engine" light on. The fault code indicated EGR low flow. We reset the light and checked that the vacuum was going to the EGR valve. The light was back on in a week.

We replaced the EGR valve, thinking that it was intermittently sticking. Again, the light came back on in one week. While surfing iATN archives for a separate problem, I came upon the fix. It was a carboned-up port (see Figure 8).


Fig. 9 Restriction at intake manifold side is difficult to access

The value to the "archive fix" was that it pointed out that the restriction was at the intake manifold side. From Figure 9, one can see the location is difficult. From Figure 10, one can see that the blockage has been removed. Once there, it became evident that this wasn’t carbon from the EGR, but rather PCV vapors from the intake coating the hot pipe inlet.

We have now added a job to our 30K services on the M104 motor. We open the steel line at the EGR valve and feed in a long section of speedometer cable. We spin the cable with a drill motor and run it through the whole tube into the intake manifold. This is a simple operation, yet it prevents having to unbury the actual fitting when it’s really plugged.

My thanks to the iATN and the unknown author.

_________________
http://direktdemokraterna.se
Myndigförklara dig själv.


Senast redigerad av karlmb tis 07-05-29 10:10, redigerad totalt 1 gång.

Upp
 Profil  
 
 Inläggsrubrik: EHA-adaptering-justering
InläggPostat: tis 07-05-29 10:03 
Offline
Forummoderator

Blev medlem: mån 07-01-01 20:57
Inlägg: 6015
Ort: Hindås
Det finns de som jobbar med detta!:

http://www.continentalimports.com/ser_ic20134.html

För säkerhets skull kopierar jag in texten här, med viktiga EHA-aspekter fetmarkerade:

Mercedes-Benz Driveability:
Evaluating Electronic Engine Controls
Steve Brotherton

February 2001

When my wife’s new ML320 had its "check engine" light come on with less than 15K on the speedometer, it was quite a job convincing her that she could drive the car until the dealer could fit her in 10 days later. I, of course, verified that the fault code indicated an O2 sensor problem and the risk was minimal to drive it around town another 10 days. I also evaluated the data stream to verify that the O2 sensor was functioning well enough so that the catalyst wouldn’t melt down in the meantime.

I have been working on cars for 30 years and now, more than ever, I see customers get in a panic over a small yellow light. These are the same people who often wouldn’t bring in their car when it was afflicted with other symptoms until it needed to be towed. This challenges technicians with the evaluation of a technical difficulty, with no external symptoms other than a small yellow light on the dash and whatever electronic self-diagnostics are available.

In preparing to write this article, I talked to a number of technicians who answer Mercedes-Benz questions on the international Automotive Technicians’ Network (iATN). They all said that the greatest number of questions being asked were still about CIS model cars. Most of these problems do have symptoms that are identifiable in the vehicle’s performance. While I use tools either listed as factory or cloned from such, I will demonstrate the simple ways to evaluate the electronic engine controls and make basic adjustments with common shop tools.

Electronically, there are four windows to the KE-Jetronic System. Two of these windows involve self-diagnostic testing and fault codes. The other two involve dynamic monitoring of the two basic electronic servos. These are the electro-hydraulic actuator (EHA) and the idle control valve.


Fig. 1 ECT Sensor disconnected


Fig. 2 O2 Sensor cold or disconnected


Fig. 3 Active, changing reading that, in this case, is slightly rich


The first self-diagnostics were "real-time" only through fixed integrator duty cycles given on pin #3 of the diagnostic connector X11 (on the left fender). This value, that is normally read with Bosch’s Lambda closed-loop tester, KDJE-P600 (see Figure 5), can also be read with a good multimeter or scope on the duty-cycle setting. Patterns 1 and 2 (see Figures 1 & 2) indicate fixed whole number duty cycles, indicating a fault. Pattern 3 (see Figure 3) shows a closed-loop active reading that changes continuously and indicates the basic mixture. As the mixture is changed by the 3mm air flow plate trim screw, the amount of correction to achieve lambda is indicated by the integrator value. The value of 38% indicates a rich reading. The total range of feedback control is from 0% to 100%. A properly adjusted engine will be in closed loop and have a integrator duty-cycle ranging plus or minus around 50%. This window gives real-time faults, average mixture settings, and a basic feel for the speed of lambda correction and O2 sensor speed.

The second and probably the best overall view of this system is seen through the monitoring of the EHA current. The EHA is the final servo device for applying the corrections intended by the control system. All forms of enrichment are accomplished by increasing the differential pressure within the fuel distributor. The EHA acts as a controlled leak depending on current. Positive current flows cause enrichened mixtures by leaking down the lower chamber pressure (higher differential pressure). Negative current flows cause lean mixtures and, on deceleration, a negative 60ma causes fuel shut-off.

A properly adjusted system will have current flows hovering at zero (for all systems but the early 190s, as they had only positive current movement and the middle was 8ma). The two readings in Figure 4 show a duty cycle reading of 35% and an EHA current of -3ma. Both of these readings indicate a slightly rich reading being corrected by the negative current on the EHA.


Both of these readings are shown with standard electrical tools (see Figure 5 for the factory tool reading). We use an inexpensive multimeter with a fixed harness that easily plugs in between the EHA and the car’s harness. The time it takes to remove the air cleaner is the greatest labor involved. The wires are long enough so that the car can be driven while being monitored.

The amount of current correction should be within 10% at various engine speeds. We usually check at idle and 2,000 rpm. Differences can indicate air leaks and, at least once, a bad EHA itself.


Fig. 4 Duty cycle reading of 35% and an EHA current of -3mA

A similar hook-up with an inexpensive ammeter can be connected to the idle control valve. The values change with this system on different vehicles, but monitoring current flow can show problems that cause the number one complaint I see — intermittent stalling. The current usually runs from 600-700ma at idle. Adding A/C usually adds 50ma control. When the idle switch opens, the valve is held open at 800-900ma to prepare for sudden throttle release. The number one intermittent problem we see is caused by the over-voltage protection (OVP) relay. Watching the idle valve current allowed me to understand how the OVP can cause stalling.

Since a disconnected idle valve limps home at a higher than normal rpm, I always found it hard to understand how removing the idle valve’s power could cause a stall. I finally saw it, though, while driving and monitoring the idle valve current. The normal current of 600-700ma dropped to 350-450ma and the idle dropped to about 450 rpm. A thump on the OVP relay caused the current, as well as the idle, to instantly jump to proper value. The current was being controlled not by the KE controller, but rather by the bad internal power feed connection of the OVP.


Fig. 5 Factory tool reading of duty cycle and EHA current

The OVP also totally fails or burns its fuse, killing all EHA current. This condition doesn’t affect a warm motor, as it should already be running closed loop at zero milliamps. But it causes most of the hard cold-starting problems. Watching the EHA current is a quick way to verify a good OVP relay. Since the ABS is also powered by the OVP relay (often by a separate circuit), a real quick diagnostic insight can be made by the combined symptoms of ABS light and hard cold starting.

As these systems progressed, they were equipped with on-board self-diagnostics with memory and check engine lights. This "fourth window" is also accessible with regular shop electrical tools. In this case, I used a scope to verify the readings that I received from my impulse counter tool (see Figure 6) that is similar to the factory tool. This process of reading codes for these early systems works up to 1994 for all systems, and later on some systems. Basically, it will work up to OBD II systems, and applies to all systems, not just engine management systems. The code retrieval method is very simple. The communications take place over a single line on the appropriate diagnostic connector. On the car I used (a 1991 300TE), the connector (X11/4) is located next to the battery, next to the right side hood hinge.


Fig. 6 Impulse tool counter

The KE controller is accessed on data terminal #3. With the key on, engine off, self-diagnostics is activated by grounding the #3 pin for two to four seconds. Once this takes place, the control unit transmits the codes by itself, grounding the #3 terminal. (Remember that all systems work the same; all you need is a directory of which pins to activate and the code table to interpret.)


Fig. 7 Code 7 reading

The impulse counter makes life easy by counting up some high numbers. In the scope pattern in Figure 7, I connected the scope negative lead on the battery positive and the positive lead in the #3 pin. I attached a jumper ground for three seconds and the control unit grounded the pin seven times, which could easily be counted. This was done again and code 13 was read, again and code 14 was read, and again and code 27 was read. If you are using the scope to read this, the time scale must be appropriate to get the whole thing, as every further activation moves on to the next code. They are listed one at a time until they are repeated. This can be done over and over. Each time the pin is grounded for two to four seconds, the next code is communicated by the control unit, grounding out the code number in "blinks." An LED can also be used to see a "blink" for counting.

Once all codes are read, they can be erased by holding the jumper to the appropriate pin for six to eight seconds. After this is done, another activation with a two- to four-second ground will read the next code, and a further six- to eight-second ground pulse will erase it. This is continued until all codes have been read and erased. This will be shown by the final code of "one blink."


Fig. 8 Carboned-up port

With the development of self-diagnostics in the late ‘80s, came the ability to receive fault codes, view actual data, activate elements and eventually change programming. The car mentioned above can be viewed and have its codes read by common shop tools. Reading actual data will require a factory scanner or a clone. Version coding and changing of adaptations has been out of reach without the factory tool HHT.

Probably the most crucial place this has affected us has been in our body shop. All the air bag modules since 1995 need to be version coded, requiring a trip to the dealer. It is claimed that one aftermarket scanner’s newest version will now do version coding, reset adaptation values and even do some data graphing. I am eager to check this out as my plans were forming to spend the big bucks on the Mercedes-Benz tool, Star Diagnosis, which is now available in some form to independents.


Fig. 10 Blockage removed from port

I recently had the pleasure to witness the testing of a 1998 GM product EVAP system with the Tech2. The presenter showed how an OBD II EVAP monitor could be initiated using a "Service Bay Test" function. The tool also could manually do testing by activating the vent valve and purge valves. The Mercedes-Benz EVAP system is similar but has no similar way of doing a service bay test using any of the aftermarket scanners. I couldn’t find anyone who knew whether or not the Star Diagnosis tool could perform such tests.

Without the ability to do those tests (especially if the manufacturer can), we need more than tools to figure them out at times. A recent case shows the latest tool: The internet. A case in point involves the iATN. A C280 came in with the "Check Engine" light on. The fault code indicated EGR low flow. We reset the light and checked that the vacuum was going to the EGR valve. The light was back on in a week.

We replaced the EGR valve, thinking that it was intermittently sticking. Again, the light came back on in one week. While surfing iATN archives for a separate problem, I came upon the fix. It was a carboned-up port (see Figure 8).


Fig. 9 Restriction at intake manifold side is difficult to access

The value to the "archive fix" was that it pointed out that the restriction was at the intake manifold side. From Figure 9, one can see the location is difficult. From Figure 10, one can see that the blockage has been removed. Once there, it became evident that this wasn’t carbon from the EGR, but rather PCV vapors from the intake coating the hot pipe inlet.

We have now added a job to our 30K services on the M104 motor. We open the steel line at the EGR valve and feed in a long section of speedometer cable. We spin the cable with a drill motor and run it through the whole tube into the intake manifold. This is a simple operation, yet it prevents having to unbury the actual fitting when it’s really plugged.

My thanks to the iATN and the unknown author.

_________________
http://direktdemokraterna.se
Myndigförklara dig själv.


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 12:33 
Offline

Blev medlem: sön 07-04-08 07:18
Inlägg: 67
Ort: Från
Hur ser EHA´n ut.
Skruvade isär det jag trodde var EHA´n, men det ser ut som en pump av nå slag, ska man skruva isär ytterligare en bit.
Bifogar bild på grejerna.

Med 50% etanol i tanken så pendlar den vid ca 5mA

Bild

Bild

Bild

Bild


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 12:45 
Offline
Användarvisningsbild

Blev medlem: sön 07-02-25 08:09
Inlägg: 369
Är inte hundra på det men är inte EHA den svarta grejen på första bilden med elanslutningarna?

Sök på EHA i forumet så kanske det finns bild... finns flera trådar om det iallafall..

Det du skruvat loss är bränslemängdmätaren...

Sista bilden, ner i hålet, visar "vågen".. den som påverkas av mängden luft som sugs in och därefter påverkar bränslemängdmätaren via kolven som syns sticka ut på näst sista bilden..


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 12:50 
Offline

Blev medlem: sön 07-04-08 07:18
Inlägg: 67
Ort: Från
Oki det förklarar en del.
Har letat som bara den både i forumet och med google.
Ska kolla sedan, men då är det nog ganska enkelt....
Fick ju lossa många bränsle anslutningar för att kunna kolla undersidan...
Ska skruva ihop allt, sedan kollar jag den svarta elgrejen ;-)
Tack för svaret..


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 12:57 
Offline
Användarvisningsbild

Blev medlem: sön 07-02-25 08:09
Inlägg: 369
Kolla så att o-ringen som sitter/skall sitta under bränslemängdmätaren (klumpen med alla bränsleanslutningar) inte har ramlat bort!

Tyvärr funkar ju inte bildlänkarna i första inlägget i denna tråden...


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 13:24 
Offline

Blev medlem: sön 07-04-08 07:18
Inlägg: 67
Ort: Från
JA jag såg oringen, lite pillig att få dit, ler.

Har skruvat bort EHA nu.
SItter 2 hål i bränslemassamätaren.
Provade olika insexsnycklar, men jag kände inte att det skulle finnas någon skruv där inne likaså på EHA´n

Bild

Bild


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 13:25 
Offline

Blev medlem: sön 07-04-08 07:18
Inlägg: 67
Ort: Från
Ragamuffin skrev:
Kolla så att o-ringen som sitter/skall sitta under bränslemängdmätaren (klumpen med alla bränsleanslutningar) inte har ramlat bort!

Tyvärr funkar ju inte bildlänkarna i första inlägget i denna tråden...


Nej autoelektronik verkar ligga nere.
Jag använder photobucket.com för att lagra mina bilder.


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 13:36 
Offline
Forummoderator

Blev medlem: mån 07-01-01 20:57
Inlägg: 6015
Ort: Hindås
Hmm på min jakt efter bilder, hittar inte ens min egen än, hittade jag detta:
http://www.w201-16v.de/w201/printview.p ... 22102eec67

För den som kör mercedes är ju denna del på tyska (resten är på engelska) rätt intressant (och förvirrande):
Henger - 11. Jul 2006 9:12
Titel:
--------------------------------------------------------------------------------
Moin

Leider ist es doch so, das wenn man auf alle 3 Komponenten (Stauscheibe, Elek.-Stellglied und Abgleichstecker) gleichzeitig einwirkt, gar nicht mehr weis was vorne und hinten ist alleine das anbringen der Abgleichstecker der RÜF -Version beim 2.5er bringt dein subjektives Erleben bei der Fahrprobe dermassen durcheinander daß du nicht mehr sagen kannst, ob der Wagen besser oder schlechter geht als zuvor!!

Ohne Prüfstand und entsprechende Messeinrichtungen geht da GAR NIX !!

Hier mal die Veränderungen des Abgleichsteckers:

das steht auf dem internen Schulungsblatt von MB:

Mit dem Kodierstecker kann eine gezielte Beeinflussung des Kennfeldes in bestimmten Betriebsbereichen vorgenommen werden. Dazu stehen 7 verschiedene Steckpositionen zur Verfügung, wobei Position 1 dem Originalzustand entspricht.
Sollte sich bei bestimmten Symptomen herausstellen, daß keine Fehlermöglichkeit nach Fehlersuchplan zutrifft, d.h. alle Prüfungen verlaufen ohne Beanstandungen, besteht in geringem Umfang die Möglichkeit einer Kennfeld-Beeinflussung durch Umstecken des im Bild gezeigten Kodiersteckers.
Steckposition 1 entspricht der Werk-Auslieferung.
Einfluß der weiteren Positionen siehe Tabelle.

Steckposition.......Verbesserung Funktion (x)

..........Nachstart-........Warmlauf-.....Beschleun.-....Kennfeld
.........anreicherung....anreicherung..anreicherung
1........... -....................... -................-.................-
2........... -........................-................-............ Abmagerung
3........... -........................-................-............ Anfettung
4............-........................x...............-.................-
5............-........................x...............x................-
6............-........................-................x............ Anfettung
7............-........................x...............x............. Anfettung

Laut dieser Tabelle macht sowieso nur Position 6 oder 7 Sinn!!
So und nu, mit einer Veränderung am Stellglied ist der Effekt wesentlich größer als mit einem Abgleich des Codiersteckers auf Stellung 7 !!
also

Heut abend mach ich weiter, hab leider keine Zeit mehr

Gruß Fränk

Skulle man alltås mha 7 läges motståndet kunna påverka både tändning och uppfetning, både nachstart, varmkörning och accelerationsanrikning...
Kanske en specialare för 2,3 16 men man undrar ju...
Nu skall jag banne mig kolla upp funktionen hos 7-läges motståndet!

_________________
http://direktdemokraterna.se
Myndigförklara dig själv.


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 13:46 
Offline
Forummoderator

Blev medlem: mån 07-01-01 20:57
Inlägg: 6015
Ort: Hindås
Här är rätt bra bilder (och info).
EHA är den svarta klumpen längst ned till höger på bilden längst ned:
http://www.norrismotorsport.co.uk/turbo ... lling.html

_________________
http://direktdemokraterna.se
Myndigförklara dig själv.


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 13:50 
Offline

Blev medlem: sön 07-04-08 07:18
Inlägg: 67
Ort: Från
karlmb skrev:
Här är rätt bra bilder (och info).
EHA är den svarta klumpen längst ned till höger på bilden längst ned:
http://www.norrismotorsport.co.uk/turbo ... lling.html


Ja då skruvade ja isär rätt del, men hittar inte på vart jag ska skruva för att öka anrikningen


Edit:

Nu förstår jag:

Läste igenom första inlägget igen, skulle ha läst det ordentligt första ggn ;-)

Bild


Bild


Senast redigerad av kabben fre 07-06-15 14:12, redigerad totalt 1 gång.

Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 14:03 
Offline
Forummoderator

Blev medlem: mån 07-01-01 20:57
Inlägg: 6015
Ort: Hindås
kabben skrev:
karlmb skrev:
Här är rätt bra bilder (och info).
EHA är den svarta klumpen längst ned till höger på bilden längst ned:
http://www.norrismotorsport.co.uk/turbo ... lling.html


Ja då skruvade ja isär rätt del, men hittar inte på vart jag ska skruva för att öka anrikningen


På den sida som sitter mot O-ringarna (anslutningarna mot fördelarhuvudet) finns ett liten mässings-spårskruv. Ta bort den så hittar du under den en liten insex-justerskruv. Ungefär 1 varv medurs är lagom vid E85-konvertering.

_________________
http://direktdemokraterna.se
Myndigförklara dig själv.


Upp
 Profil  
 
 Inläggsrubrik:
InläggPostat: fre 07-06-15 14:17 
Offline

Blev medlem: sön 07-04-08 07:18
Inlägg: 67
Ort: Från
Nuså.

Nu har jag vridit den ett varv, kollar på amperemätaren och den visar på ca 2mA vid 50%inblandning. Ska tanka rent nästa gång, men först ska jag fixa ett motstånd och en brytare till kallstartsannordningen.

Synd inte bilden högst upp funkar, skulle vilja veta hur och vart man kopplar in det.


Upp
 Profil  
 
Visa inlägg nyare än:  Sortera efter  
Ny tråd Svara på tråd  [ 102 inlägg ]  Gå till sida 1, 2, 3, 4, 5 ... 7  Nästa

Alla tidsangivelser är UTC + 1 timme


Vilka är online

Användare som besöker denna kategori: Inga registrerade användare och 14 gäster


Du kan inte skapa nya trådar i denna kategori
Du kan inte svara på trådar i denna kategori
Du kan inte redigera dina inlägg i denna kategori
Du kan inte ta bort dina inlägg i denna kategori
Du kan inte bifoga filer i denna kategori

Sök efter:
Hoppa till:  
POWERED_BY
Swedish translation by Peetra & phpBB Sweden © 2006-2011